If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1x^2+1x=0
We add all the numbers together, and all the variables
-1x^2+x=0
a = -1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-1)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-1}=\frac{-2}{-2} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-1}=\frac{0}{-2} =0 $
| 1/5k=40 | | -4x-3+x=6(x-2) | | 4k=26 | | 40x+137=357 | | x-10+30=90 | | y12−5=11 | | 1/3x-3/4x=1/4 | | -2(x+4)=x+6-5x | | s+41=97 | | 5(2+3x=-65 | | -4x+1=2x+43 | | √x²-11=5 | | x+29=2(x+29) | | z/(-5)=10 | | 3w+5=5w-5 | | s-1=100 | | 3-5=n+1-5 | | -14-6y=y | | -2m+4=8m+24 | | t+-7=-20 | | 62=x+19 | | 3x=11- | | -2m+4=8m+246 | | 7=v+(-85) | | 65=x+23 | | x-0.04x=424 | | 3x-5x+2=-8 | | 3x=12+1x | | 123=x+98 | | -6x-3x+1=10 | | a4=-192 | | 14x+1=-2+8x |